Stretchy optical fibers for implanting in the body
Biocompatible fibers could use light to stimulate cells or sense signs of disease.
Jennifer Chu | MIT News Office
October 17, 2016
Press Inquiries
Researchers from MIT and Harvard Medical School have developed a biocompatible and highly stretchable optical fiber made from hydrogel — an elastic, rubbery material composed mostly of water. The fiber, which is as bendable as a rope of licorice, may one day be implanted in the body to deliver therapeutic pulses of light or light up at the first sign of disease.
The researchers say the fiber may serve as a long-lasting implant that would bend and twist with the body without breaking down. The team has published its results online in the journal Advanced Materials.
Using light to activate cells, and particularly neurons in the brain, is a highly active field known as optogenetics, in which researchers deliver short pulses of light to targeted tissues using needle-like fibers, through which they shine light from an LED source.
“But the brain is like a bowl of Jell-O, whereas these fibers are like glass — very rigid, which can possibly damage brain tissues,” says Xuanhe Zhao, the Robert N. Noyce Career Development Associate Professor in MIT’s Department of Mechanical Engineering. “If these fibers could match the flexibility and softness of the brain, they could provide long-term more effective stimulation and therapy.”
Getting to the core of it
Zhao’s group at MIT, including graduate students Xinyue Liu and Hyunwoo Yuk, specializes in tuning the mechanical properties of hydrogels. The researchers have devised multiple recipes for making tough yet pliable hydrogels out of various biopolymers. The team has also come up with ways to bond hydrogels with various surfaces such as metallic sensors and LEDs, to create stretchable electronics.
The researchers only thought to explore hydrogel’s use in optical fibers after conversations with the bio-optics group at Harvard Medical School, led by Associate Professor Seok-Hyun (Andy) Yun. Yun’s group had previously fabricated an optical fiber from hydrogel material that successfully transmitted light through the fiber. However, the material broke apart when bent or slightly stretched. Zhao’s hydrogels, in contrast, could stretch and bend like taffy. The two groups joined efforts and looked for ways to incorporate Zhao’s hydrogel into Yun’s optical fiber design.
Yun’s design consists of a core material encased in an outer cladding. To transmit the maximum amount of light through the core of the fiber, the core and the cladding should be made of materials with very different refractive indices, or degrees to which they can bend light.
“If these two things are too similar, whatever light source flows through the fiber will just fade away,” Yuk explains. “In optical fibers, people want to have a much higher refractive index in the core, versus cladding, so that when light goes through the core, it bounces off the interface of the cladding and stays within the core.”
Happily, they found that Zhao’s hydrogel material was highly transparent and possessed a refractive index that was ideal as a core material. But when they tried to coat the hydrogel with a cladding polymer solution, the two materials tended to peel apart when the fiber was stretched or bent.
To bond the two materials together, the researchers added conjugation chemicals to the cladding solution, which, when coated over the hydrogel core, generated chemical links between the outer surfaces of both materials.
“It clicks together the carboxyl groups in the cladding, and the amine groups in the core material, like molecular-level glue,” Yuk says.
Sensing strain
The researchers tested the optical fibers’ ability to propagate light by shining a laser through fibers of various lengths. Each fiber transmitted light without significant attenuation, or fading. They also found that fibers could be stretched over seven times their original length without breaking.
Now that they had developed a highly flexible and robust optical fiber, made from a hydrogel material that was also biocompatible, the researchers began to play with the fiber’s optical properties, to see if they could design a fiber that could sense when and where it was being stretched.
They first loaded a fiber with red, green, and blue organic dyes, placed at specific spots along the fiber’s length. Next, they shone a laser through the fiber and stretched, for instance, the red region. They measured the spectrum of light that made it all the way through the fiber, and noted the intensity of the red light. They reasoned that this intensity relates directly to the amount of light absorbed by the red dye, as a result of that region being stretched.
In other words, by measuring the amount of light at the far end of the fiber, the researchers can quantitatively determine where and by how much a fiber was stretched.
“When you stretch a certain portion of the fiber, the dimensions of that part of the fiber changes, along with the amount of light that region absorbs and scatters, so in this way, the fiber can serve as a sensor of strain,” Liu explains.
“This is like a multistrain sensor through a single fiber,” Yuk adds. “So it can be an implantable or wearable strain gauge.”
The researchers imagine that such stretchable, strain-sensing optical fibers could be implanted or fitted along the length of a patient’s arm or leg, to monitor for signs of improving mobility.
Zhao envisions the fibers may also serve as sensors, lighting up in response to signs of disease.
“We may be able to use optical fibers for long-term diagnostics, to optically monitor tumors or inflammation,” he says. “The applications can be impactful.”
“Hydrogel fibers are very interesting and provide a compelling direction for embedding light within the human body,” says Fiorenzo Omenetto, a professor of biological engineering at Tufts University, who was not involved in the work. “These efforts in optimizing and managing the physical and mechanical properties of fibers are necessary and important next steps that will enable practical applications of medical relevance.”
This research was supported, in part, by the National Institutes of Health, and the Department of Defense.
— Read on news.mit.edu/2016/stretchy-optical-fibers-implanting-body-1017
Meta
-
Recent Posts
- GANG-STALKING defined & explained: January 26, 2022
- Nanoparticles can turn off genes in bone marrow cells October 8, 2020
- Functional Near-Infrared Spectroscopy (fNIRS) Cognitive Brain MonitorNew signal-processing techniques excludes motion artifacts to yield more accurate data February 29, 2020
- The Origin of Consciousness in the Breakdown of the Bicameral Mind, February 16, 2020
- Experimentally Observed Cherenkov Light Generation in the Eye During Radiation Therapy- the flashes you see have been proven. January 10, 2020
- Using nanoparticals to stimulate the brain remotely. January 10, 2020
- Biotechnology and nanotechnology September 27, 2019
- Thousands in China Exposed to ‘Mind Control’ Technology Seek Answers September 24, 2019
- Detecting patients’ pain levels via their brain signals | MIT News September 18, 2019
- Living sensors at your fingertips | MIT News September 3, 2019
- Stretchy optical fibers for implanting in the body | MIT News September 3, 2019
- Engineers 3-D print a “living tattoo” | MIT News September 3, 2019
- Robotic thread is designed to slip through the brain’s blood vessels | MIT News September 3, 2019
- Synthetic biological organisms designed and created for industrial process using genetic engineering August 29, 2019
- MIT engineers build advanced microprocessor out of carbon nanotubes | MIT News August 29, 2019
- Information about through the wall radar, and active radio wave effects on the human body, various surveillance technologies used against unsuspecting humans August 23, 2019
- Human hair as a nanoreactor in the synthesis of gold (and other) nanoparticles August 23, 2019
- Colour-changing artificial ‘chameleon skin’ powered by light-triggered nanoparticles August 22, 2019
- Detection of neuronal activity using microwave energy August 17, 2019
- A poem. June 2, 2019
- History of Morgellons disease: from delusion to definition May 24, 2019
- (no title) May 19, 2019
- Limits of Human Perception July 24, 2017
- evidence for the apparent existence of Invisible Terrestrial Entities of the first kind (ITE-1) & Invisible Terrestrial Entities of the second kind (ITE-2) or bright ITE July 24, 2016
- Parallel universes are no longer a figment of our imagination July 23, 2016
- toxoplasmosis changes behavior of host July 17, 2016
- Optogenetics Resource Center July 17, 2016
- Magic mushrooms’ psychedelic ingredient could help treat people with severe depression July 17, 2016
- Researchers identify gatekeeper neurons that control pain and itch | Science | The Guardian July 17, 2016
- Bumblebee’s electric field sensor identified | Science | The Guardian July 17, 2016
- Presidential Commission: Directed Energy Weapons Used On American Citizens in Tests July 17, 2016
- A Note on Timothy Trespas, Gang Stalking and the Gospel, by Bridget Howe. From:FaithWriters.com-Christian Encouragement – July 17, 2016
- SURVIVAL, EVASION, RESISTANCE AND ESCAPE MULTI-SERVICE TACTICS, TECHNIQUES AND PROCEDURES July 1, 2016
- TARGETING, GANGSTALKING, MORGELLONS, REMOTE-NEURAL-MONITORING,VOICE-2-SKULL, COVERT DRUGGING, ENERGY BASED WEAPONS, ATTACKS WITH FLEAS, MITES, VIRUS, BACTERIA, NEMATODE, NANOBOTS, SYNTHETIC BIOLOGY, NANOTECHNOLOGY, MICROWAVE WEAPONS, TRASHING THE VICTIM,COVERT DRUGGING, FUNGUS, MOLD, ERGOT, LSD,DMT, MIND-FUKING THE VICTIM, ETC, ETC , June 2, 2016
- In sickness and in… Timothy Trespas suffers from targeting and torture. May 30, 2016
- NOAA SPACE GEOMAGNETIC WEATHER Weather Scales 04-11-11 May 11, 2016
- Practical Real Time Spectrum Analyzer Applications Part 1 — Basics Of Interference Hunting And Spectrum Monitoring | Signal Hound May 10, 2016
- EPIC Sensor – Plessey Semiconductors May 5, 2016
- Some peculiarities of auditory sensations evoked by pulsed microwave fields – Tyazhelov – 1979 – Radio Science – Wiley Online Library May 4, 2016
- SHIELDING? Get SHUNGITE mineral -STONE OF HEALTH! Neutralize high-frequency electromagnetic radiation & they reflect all possible magnetic fields January 5, 2016
- Everyday benefits of Shield January 4, 2016
- The Herxheimer Reaction December 20, 2015
- MAX, our FRIEND & CAT has DIED…. R.I.P. MAX – YouTube October 26, 2015
- Mycoplasma incognitus – MicrobeWiki October 18, 2015
- Nanotechnology and forensics: nano-powders that have been engineered to be used in conjunction with SALDI-TOF2-MS.(Surface-assisted laser desorption/ionization time-of-flight (TOF)/reflectron (RTOF) mass spectrometry) August 1, 2015
- One paradigm is worth a thousand rules: How can we teach computers compassion (and stop humans from using them to hurt and kill!) ? Artificial Intelligence, Psychology, and theories of mind. August 1, 2015
- DSM-IV-TR: Diagnostic criteria for schizophrenia:- what the professional psychiatrists use to diagnose you as schizophrenic July 9, 2015
- amazing Nanotechnology – Images -materials science. Images can often convey information in a way that tables of data or equations cannot match May 26, 2015
- The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering : Nature Communications : Nature Publishing Group May 26, 2015
- METALS IN MEDICINE AND THE ENVIRONMENT-Aluminum and Alzheimer’s Disease May 26, 2015
Archives
Pages
- About
- about electromagnetic torture, mind control, and remote neural monitoring by/in The U.S.A. – by TIMOTHYTRESPAS
- I an a victim of Covert Drugging with Millitary LSD like drugs… by TIMOTHY TRESPAS
- microbiology from inside my body, provided by slow-kill nanotechnology, weaponized biological attacks, synthetic biology, parasitology, human experimentation, microscopic investigation
- Trauma based Neuro-linquistic programming-How it works: a real life example from Timothy Trespas in New York City
- victim of extrajudicial covert human experimentation, torture, repeated drugging with military LSD like compounds, exposure to nanotechnology, foreign DNA implantation, remote neural monitoring, mind control, gang-stalking, gas-lighting, electrocution, poisoning, surveillance, and other human rights abuses by operatives and informants of the NEW SECRET POLICE. by Timothy Trespas
- Welcome to the 21st century- the NEW HOLOCAUST- how Mind Control, remote neural connectivity, artificial intelligence, the Military? & Government of the USA? o.k. the cooking of humans with Microwave directed energy weapons, and worse!
- What if? A theory on STRESS & ‘Targeting’
Categories
Flickr Photos
Tags
- 330 west 51st street nyc
- artificial intelligence
- attack
- brain
- brain mapping
- brain wave
- change
- chemtrails
- christ
- cia
- community
- compassion
- consciousness
- conspiracy
- control
- covert
- covert drugging
- creator
- DARPA
- death
- democracy
- depopulation
- dna
- drugs
- electromagnetic
- energy
- evil
- freedom
- frequency
- gangstalking
- genetic manipulation
- GMO
- god
- government
- HARP
- help
- home
- human
- human experimentation
- humanity
- illuminati
- implants
- information
- insects
- interferometry
- justice
- lies
- light
- love
- lsd
- manipulation
- microwave
- microwaves
- microwave weapons
- mind
- mind control
- Mind Control is HERE NOW and being used on entire population in the USA and abroad. embedded microchip marking of all human assets via bio-nanotechnology is real, possible, and being done to us as we
- mk ultra
- morgellons
- murder
- nanotechnology
- nazi
- neural
- new word order
- new world order
- no-touch torture
- nsa
- nwo
- pandemic
- peace
- petra schiller.
- prayer
- programming
- quantum dots
- reality
- remote
- remote neural
- remote neural monitoring
- rights
- scalar
- science
- secret
- sickness
- smart dust
- society
- suffering
- synthetic biology
- SYNTHETIC TELEPATHY
- target
- targeted individual
- targeted individuals
- targeting
- technology
- timothy trespas
- timothytrespas
- top secret
- torture
- usa
- YESHUA
- youtube
Pingback: SCALAR weapons