The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering : Nature Communications : Nature Publishing Group

The 3D-architecture of individual free ​silver nanoparticles captured by X-ray scattering

The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth.

In the kinetically limited regime, intermediate geometries that are favored only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free ​silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science.

Naturally grown particles exhibit a vast variety of architectures ranging from simple, almost spherical shapes (for example, fog droplets), to highly symmetric polyhedral (for example, clusters or certain viruses) and fascinating, complex geometries such as snowflakes or pollen grains. Studying growth processes of nanostructures addresses the key fundamental question of how geometric structure and stability are determined by the occurrence of thermodynamically metastable shapes during particle formation. An illustrative case is the condensation of metal nanoparticles. Albeit optimal equilibrated shapes can be predicted from energetic considerations such as the Wulff construction1, manifold morphologies are frequently reported2, 3, 4 that are far away from the ideal equilibrium geometries and often beyond theoretical predictability. Conventional microscopy methods have enabled high-resolution imaging of individual particles grown or deposited on surfaces and revealed insight into their geometric properties3, 5. Single free, unsupported particles, however, elude experimental access via microscopy since they cannot be immobilized without an interacting substrate. The current knowledge on the morphology of free metal particles is therefore based on orientation- and ensemble-averaged approaches such as electron diffraction6, 7, 8, drift measurements9 and photoelectron spectrocopy10.

An unambiguous experimental morphology characterization of free particles has to face a number of challenges. First, the co-existence of diverse shapes requires circumvention of ensemble averaging by the study of individual particles. Second, to reliably resolve the particle shape irrespective of its orientation, three-dimensional (3D) imaging methods are required. Third, free particle growth is a statistical process such that a specific combination of shape, orientation and size cannot be repeatedly prepared, excluding tomographic techniques11, 12 that rely on multiple measurements of the same object or of equivalent replicas. Considerable efforts have been devoted to obtaining 3D structure information of nanosystems via diffractive imaging with intense femtosecond pulses from X-ray free-electron lasers (X-FELs)13, 14, 15, 16, 17, 18, 19, 20, 21. In-flight characterization of single nanoparticles by X-ray small-angle scattering has been successfully demonstrated, revealing the effective two-dimensional (2D) projection of the electron density14, 16, 20. The 3D reconstruction based on single-shot small-angle X-ray scattering data can only be achieved by exploiting additional symmetry information, as was shown for the case of deposited particles18. The reconstruction of wide-angle X-FEL scattering has been advocated as an enabling technology for the complete single-shot 3D structure determination of individual nanosystems15. However, the short X-FEL wavelengths utilized in previous single-shot in-flight particle imaging studies precluded the detection of sufficient wide-angle signal to apply this technology.

Here we show that this limitation can be overcome by employing soft X-FEL pulses. Based on the resulting single-shot wide-angle scattering images, we demonstrate the identification of symmetry, morphology and orientation of individual gas-phase ​Ag particles by means of a simple and efficient procedure based on fast simulations. Our approach is complementary to the full reconstruction via phase retrieval methods14, 15, 16, 18, 19, 21, 22, 23 as it allows extracting the relevant 3D structure information from a single scattering pattern of an individual particle without computational inversion of the scattering process, provided that the particles can adequately be described by a parametric geometry model. The reported results provide evidence for metastable shapes of unsupported ​Ag particles in a so far inaccessible size regime.

Wide-angle scattering experiment

The key experimental requirement for the 3D characterization is the ability to resolve the scattering signal up to large angles. For an illustrative motivation of this requirement, it is convenient to assume validity of the first Born approximation. In the limit of small-angle scattering, the scattered far-field can essentially be described by a 2D Fourier transform of the object’s shape projected onto a plane (characterized by normal vector np||kin) perpendicular to the incident beam direction, see Fig. 1a. This follows from the fact that the transfer momentum q is small in magnitude (|q|≪|kin|) and therefore essentially perpendicular to the incident wave vector kin. The resulting intensity distribution (i) reflects only effective 2D information on the object’s density distribution and (ii) is point-symmetric with respect to q=0, which impedes unique identification of the target orientation.

Figure 1: Schematics of the wide-angle scattering experiment.
Schematics of the wide-angle scattering experiment.

In Born’s approximation, the far-field scattering intensity reads I(q)∝|∫ρ(r)eiqrd3r|2, where ρ(r) is the scattering density of the particle centered at r=0. After decomposing r into components parallel (r||) and perpendicular (r) to the projection vector np=kin+q/2, which is by definition perpendicular to q, the intensity can be recast as , representing the Fourier transform of the projected density ρ(r)=∫ρ(r)dr|| on a plane with normal vector np. (a) For small scattering angles, the approximation np||kin is valid, which inhibits access to any structural information along this direction. (b) The variation of np with q for large scattering angles provides access to the 3D properties of the particle. (c) In the experiment, single-shot diffraction patterns of ​silver particles intersecting the FEL photon beam are captured by the 2D detector.

These limitations can be overcome by recording scattering under large angles (|q|≈|kin|) because the scattering pattern then reflects dependent projections of the density (on planes with normal vectors ), see Fig. 1b. In a sense, wide-angle scattering enables single-shot tomography as the direction of the projection plane varies with scattering angle within a single image.

However, due to the drastic decrease of the scattering intensity I(q) with increasing |q| (Porod’s law), significant signal from the particle shape can in practice be detected only up to a critical angle. Considering near spherical shapes, this angle is roughly proportional to the wavelength and limited to a few degrees when using hard X-ray radiation in the keV range (see Methods). Here we remedy this limitation by employing 90 eV soft X-ray laser pulses to access the wide-angle regime required for the 3D characterization of individual particles.

In the experiments (see scheme in Fig. 1c), ​silver particles were prepared in a cluster machine24 equipped with a magnetron sputtering source and directed into the focus of the 100 fs soft X-ray pulses provided by the free-electron laser (FEL) facility FLASH (see Methods for details). Note that for the employed wavelength of 13.5 nm, the detailed atomic structure is averaged out in the scattering images, simplifying the shape analysis tremendously. Scattering images were captured by a 2D detector with 78° acceptance angle17, 25. A total of 25,000 scattering images with significant intensity have been recorded.

Scattering patterns and particle morphologies

The measured single-particle scattering images (Fig. 2, left column) show highly symmetric patterns with twofold (a), threefold (b), fivefold (c), and sixfold (d) symmetry. The patterns consist of one or more closed ring-like features near the centre followed by discontinuous higher order rings that form streak-like features accompanied by a faint fine structure. Scattering patterns with odd number of mirror axes (Fig. 2b,c), that is, with broken point symmetry, immediately demonstrate that the wide-angle scattering data contains true 3D structure information. Because of substantial absorption of the soft X-ray radiation inside the particles (penetration depth ≈12.5 nm for bulk ​silver), the morphology identification method must account for scattering effects beyond the Born approximation, which excludes application of conventional iterative reconstruction techniques. We use a simple and efficient multislice Fourier transform (MSFT) algorithm that includes an effective treatment of absorption to calculate scattering images from 3D trial shapes based on a large systematic set of polyhedra (see Methods).

Figure 2: Comparison of measured and theoretical scattering images.
Comparison of measured and theoretical scattering images.

(ad) Selected experimental scattering patterns of single ​Ag particles and MSFT simulation results for matched geometries (as indicated). False-colour images show the scattering intensity (logarithmic scale) as function of the transverse components of the scattering vector. The dark spot in the centre of the experimental data originates from a hole in the detector for direct beam transmission. Cluster shapes are drawn as seen from the direction of the incident beam. The size is given by the radius r of the polyhedra’s circumscribed sphere. (eh) Same cluster shapes as in ad imaged at different orientations with respect to the incident beam. Trunc, truncated.

Excellent qualitative agreement between measured scattering images and MSFT results (Fig. 2) is achieved by adjusting size and orientation of the trial model shapes (see Methods for the detailed procedure). In most cases, even fine details are well reproduced, such as the spots in between x-shaped main features in Fig. 2a. Among the morphologies that match the experimental data are decahedra (a), truncated octahedra (b), icosahedra (c) and surprisingly flat hexagonal particles, which correspond to truncated twinned tetrahedra (d). For each of the above shapes, particles with different size and orientation are identified in the data set (see examples in Fig. 2e–h), confirming the repeated occurrence of the identified geometries. Although some of the compact shapes (such as those in Fig. 2b,c) deviate only weakly from a sphere, the scattering images taken for different orientations are extremely diverse (compare Fig. 2b,c to Fig. 2f,g respectively; see Supplementary Movie 1 for a simulation of all high-symmetry orientations of a truncated octahedron). The strong directional and shape sensitivity (even for nearly spherical shapes) demonstrates the 3D capabilities required for the unique identification of particle morphologies. Striking evidence for the transition from small- to wide-angle scattering regimes can be found within a single image for large clusters if it shows broken point symmetry (see Fig. 2b,g). In these cases, the symmetry changes from even, close to the image centre, to odd in the outer regions.

Benchmark of the MSFT method

To corroborate the reliability of the MSFT method and to elucidate the role of absorption, we have compared theory results for different levels of approximation for the case of the truncated octahedron (cf. Fig. 2b). The resulting data within the small-angle approximation (Fig. 3a), implemented via a 2D Fourier transform of the projected scattering density, predicts point symmetric scattering images (the power spectrum of a real-valued function is symmetric) and fails to resemble the experiment. This point symmetry is lifted in the 3D simulation (Fig. 3b) obtained within Born’s approximation. Comparison to MSFT including effective absorption (Fig. 3c) shows that absorption induces a broadening of scattering features, a relative intensity increase in higher diffraction orders and a reduction of the scattering angle of the first-order intensity maximum. Differences between the MSFT result and that of the full treatment of multiple scattering within the finite-difference time-domain (FDTD) framework (Fig. 3c versus Fig. 3d) are more subtle and in most cases irrelevant for shape identification, justifying the effective absorption treatment in MSFT. Compared with the 3D simulations in Fig. 3b–d, the 2D scattering image in Fig. 3a shows similar features close to the centre but deviates significantly at large scattering angles, illustrating the transition from small-angle to wide-angle scattering within a single image.

Figure 3: Comparison of different approximation levels.
Comparison of different approximation levels.

False-colour images show the simulated scattering intensity (logarithmic scale) of a truncated octahedron (cf. Fig. 2b) as function of the transverse components of the scattering vector within different approximations. (a) Small-angle approximation corresponding to an effective scattering density projected onto a plane. (b) Born’s approximation taking into account the full 3D geometry but no absorption and refraction. (c) Same as b but including a simplified absorption model. (d) Full FDTD simulations using the optical properties of bulk-​silver.

Shape refinement

The MSFT method enables efficient shape identification from a finite set of trial shapes and yields a rough estimate of the parameters of the respective geometry model. A more accurate description of the scattering process via FDTD simulations offers further refinement of the free parameters by direct minimization of the mean-squared deviation of calculated and experimental scattering patterns (see Methods for technical details). This is exemplarily illustrated in Fig. 4 for the truncated octahedron from Fig. 2b, yielding even better agreement between experiment and simulation (R-factor ≈0.18, see Fig. 4e). The resulting shape (Fig. 4c) was obtained after optimizing the degree of truncation and the radius of the particle, leading to a slightly reduced value of the predicted radius of r=95 nm (Fig. 4d) and a relative truncation of 0.39, as compared with the MSFT estimate of r=100  nm obtained under the assumption of an ideal Archimedean shape with a truncation of 1/3. This scheme can be extended to other parameters such as orientation (see Fig. 4e) or shape asymmetries to obtain precise information on the geometry of the individual nanoparticle.

Figure 4: Optimization of model parameters.
Optimization of model parameters.

(a) Experimental and (b) simulated scattering patterns for a single ​Ag particle with the optimized shape of a truncated octahedron as depicted in c using the FDTD method (false-colour on logarithmic scale). Parameter optimization for truncation and radius was performed by minimization of the mean-squared deviation (MSD) of experimental data from theory as exemplarily shown in d for the particle size. The optimal radius is r=95 nm with an uncertainty of ±8%, estimated from the curvature of the normalized MSD around the minimum40. (e) R-factor as a function of rotation angle for the truncated octahedron depicted in c. For these calculations, the model shape is rotated away from the optimal orientation in c around an axis parallel to the upper edge of the hexagonal front facet.

The variety of particle structures derived from the scattering images in Fig. 2 demonstrates that the motives are much richer than expected from thermodynamic considerations in the investigated size regime. Similar morphologies as those found in this work were reported for preparations involving chemical reactions3, physically evaporated2, 26 or cluster-beam deposited27 particles, providing evidence for the general existence of such shapes. The particles in these studies were, however, supported by a substrate and are not imaged in the free beam. In the absence of a surface, only truncated octahedra can be derived by free surface energy minimization of particles with face-centred cubic (fcc) lattice structure. Decahedral and icosahedral geometries represent metastable states whose facets cannot be constructed from low-index surfaces of a single fcc crystallite. Particularly striking is the case of unsupported icosahedral particles, which are stable for small clusters but have been predicted to undergo a transition to fcc-derived structures already for sizes as low as a few hundred atoms28. Previous observations of icosahedral clusters considerably larger than that (a few 106 atoms) have been explained by a non-equilibrium growth process, where isomers being favoured for small sizes provide seed shapes that persist in subsequent stages of particle formation2, 7, often resulting in multiple twinned species3. The current results demonstrate the existence of free metastable nanoparticles up to much larger radii of ≈150 nm (≈109 atoms). The identified highly symmetric metastable shapes reveal that free ​Ag nanoparticles retain a structural memory of early formation stages up to this so far unexplored size range. This conclusion is corroborated by the observation of strongly oblate particles with aspect ratios of about four (Fig. 2h). The 30–40% larger surface of such shapes substantially increases the surface energy when compared with minimal energy structures (for example, truncated octahedral). In contrast to supported particles, where anisotropic shapes can result from cluster–surface interactions29, 30, the strongly anisotropic free metal particles observed here provide evidence for pronounced symmetry breaking solely induced by the seed structures, in surprising analogy to the formation of ionic or water crystals like salt or snowflakes.

Retrieving the 3D morphology of free nanoparticles from single wide-angle scattering patterns opens up new routes for interdisciplinary research. The efficient and simultaneous determination of size, shape and orientation enables systematic high-throughput studies of particle properties. Applied to time-resolved experiments, the shape-specific evolution of growth, structural phase transitions and relaxation phenomena become accessible, with implications for various fields including molecular and atmospheric physics, material science, chemistry and astrophysics. Combined with femtosecond pump-probe schemes, single-shot imaging promises new insight into the ultrafast dynamics of free nanoparticles, such as collective electron31 and nuclear32 motion or non-equilibrium melting processes. Moreover, the sensitivity to the complex index of refraction may provide access to ultrafast changes of optical and electronic properties of nanoparticles17.


Particle source

Silver particles were produced by a cluster beam machine24 equipped with a magnetron sputtering source, operated with Ar and Xe at a pressure of the order of ≈1 mbar. The aggregation section was cooled with liquid nitrogen. No mass selection or ion optics have been used. The clusters were guided into the differentially pumped main chamber through a conical skimmer with 3 mm inner diameter.

Scattering experiment

About 70 cm behind the source, the beam density was low enough to ensure a single nanoparticle at a time in the focal volume (focus size≈20 μm) of the FEL FLASH at DESY in Hamburg. The power density of the FEL pulses has been estimated from the highest observed charge state of atomic Xe. Typically, Xe11+ is found which corresponds to 1014-1015 W cm2 at a pulse length of ≈100 fs (refs 33, 34). The scattering patterns were recorded shot-to-shot (10 Hz repetition rate) with an imaging detector as described in refs 17, 25, covering scattering angles from θ≈3° to 39° over a 2π azimuth. To avoid detector damage from the direct FEL beam, all detector components have a centre hole. The tilt angle of the detector microchannels results in a depletion artefact visible at (qx, qy)≈(0.6, –0.4) nm−1 in the scattering images (for example, Fig. 2d). Due to the weak focus conditions (Rayleigh length: some mm; wavelength: 13.5 nm), the description as a plane wave is justified for the incident beam. In order to maintain single-particle conditions in the focal volume35, the hit rate was kept below 10%. Most of the 25,000 scattering patterns with significant signal (from a total of 300,000 recorded images) originated from small clusters resulting in no fringes or from agglomerates of two or more particles (for typical signatures see ref. 35). About 1,000 images were suited for further analysis, for about 100 of them, the particles’ shape, size and orientation have been uniquely identified in this work. The most common symmetric morphologies are truncated octahedra, flat hexagonal shapes, decahedra and isosahedra. Due to manual selection of scattering images for identification, the obtained variety of shapes does not necessarily reflect the actual statistics present in the particle beam.

Experimentally accessible angular range

Within Born’s approximation and under the assumption of free electrons (scattering factors of unity), the scattering cross-section for a homogeneous sphere, and therefore also the scattering intensity I(q) measured at a fixed distance, is independent of the photon wavelength up to trivial polarization effects. As the envelope of the resulting fringe pattern rapidly decreases with the transfer momentum q (Porods law: q−4), the experimentally accessible q-range is restricted to a maximum value qcrit (limited by dynamic range of the detector, background noise, incoherent scattering and so on). The relation between q and scattering angle θ is , hence the angular range onto which the accessible part of the scattering pattern is mapped scales (in first-order approximation) as θcritλ·qcrit. Therefore, the wide-angle scattering regime is easily accessible for soft X-ray radiation used in our experiment (λ=13.5 nm), in contrast to hard X-rays (λ<1 nm), where the detectable signal is restricted to an angular range of a few degrees for realistic experimental conditions.

Observed scattering features

Independent of shape, the scattering images show a number of quasi-continuous, often interrupted rings near the centre (for example, Fig. 2b,c), whose distance Δ|q||| directly reflects the particle size (for example, for a sphere via Δ|q|||=π/r due to Mie scattering17). This enables a useful size estimate, almost irrespective of other parameters. Note that while the maxima of the radial intensity oscillations for a sphere are strictly equidistant as function of q, their period length decreases towards the edges of the scattering images when plotting against kx=qx and kx=qx. For non-spherical shapes, the ‘ring distance’ Δ|q||| at large |q||| depends on the direction in the (qx, qy) plane, as is most apparent for strongly oblate clusters such as the decahedron (Fig. 2a) or the truncated twinned tetrahedron (Fig. 2h). The breakup of rings into radial oscillating streaks indicates the transition from signatures of the coarse shape (for example, compact versus flat) towards sensitivity to the arrangement of facets, edges and vertices at higher diffraction orders. Bright streaks in the scattering image can be attributed to the diffraction of facets that are aligned almost parallel to the incident photon beam. The direction and intensity of the observed streaks thus enables an efficient preselection of relevant morphological candidates for the matching process to simulation data.

Multislice Fourier transfom method

The model electron density distributions used for calculating the scattering patterns are divided into stacks of 2D slices whose normal vectors are oriented parallel to the incident photon beam. This is similar to techniques previously applied to electron scattering7, 36, 37, as well as to soft X-ray diffraction of supported particles38. The final scattering intensity corresponds to the modulus square of the phase-correct sum of the 2D Fourier transforms of the slices. Polarization properties have been included via an angle-dependent differential Thomson cross-section. Material properties are approximately taken into account by reducing the scattering amplitude as a function of propagation through the material according to Beer–Lambert’s law. Compared with the direct field summation from an arrangement of point scatterers, the MSFT method accelerates the computation by two orders of magnitude for typical particles investigated here.

Shape identification

The procedure for finding the size, shape and orientation of a particle from a single scattering image is as follows. The observed features are first qualitatively compared with simulation results based on a finite set of model shapes that consists of all Platonic and Archimedean shapes up to 32 facets, derived geometries obtained via truncation and some additional shapes described in the literature as candidates for deposited metal particles (see for example, refs 2, 3, 26, 27). We used homogeneous density distributions for the simulations, but inhomogeneities arising from impurities or core shell structures are accessible if they induce distinct features in the wide-angle scattering image. The priority for judging the quality of this comparison is given to the number, direction, and shape of the main streaks. For each shape, all inequivalent orientations are tested along high-symmetry directions or in coarse steps of typically 5°–10° around two axes (the last axis corresponds to a trivial 2D rotation of the scattering image as a whole). If qualitative agreement is achieved, an approximate particle size is determined from the distance Δ|q||| of the higher-order diffraction rings. The model shape is then rotated until best agreement between simulation and experiment is achieved. In a last step, the precise particle size is adjusted by matching the period of simulated features in radial q|| direction to the experimental data19. Since the duration for calculating one MSFT pattern is about a second on a standard desktop computer, this procedure is surprisingly efficient, despite the need for a large quantity of simulations per experimental scattering image. Among the set of model shapes described above each identified shape is unique in that any other model results in significant qualitative discrepancies between experimental and simulation results. Only in the case of extremely flat platelets (see Fig. 2d,h), the exact orientation of the small-side facets cannot be specified since they do not give rise to pronounced features in the diffraction pattern. The important observation of the large aspect ratios, however, remains unaffected.

Finite difference time domain simulations

For accurate refinement of model parameters describing the shape and for benchmarking the MSFT approach, we performed FDTD simulations of the wide-angle scattering. Therefore, the model shapes are sampled on a cubic, equidistant grid with spatial resolution Δx=1.0 nm and 959 × 959 × 319 cells, where the shortest dimension corresponds to the propagation direction of the soft X-ray radiation. The complex permittivity of bulk ​silver for the considered wavelength of 13.5 nm was used39. The corresponding attenuation length is λabs≈12.5 nm for bulk ​silver. Maxwell’s equations are solved for a plane incident wave on a staggered grid (Yee scheme) with absorbing boundary conditions (uniaxial perfectly matched layer) using the FDTD implementation of ref 31. The complex scattered electric near-fields are extracted on a plane with normal vector parallel to the optical axis placed closely behind the target structure. The scattered far field intensity distributions are obtained using a near-to-far-field transformation of the continuous wave solution. A typical result of the FDTD method is compared with MSFT in Fig. 3c,d.

Refinement of parameters describing the model shape

Refinement of the model shape is done by optimizing additional parameters such as orientation, truncation and size. An upper bound for the error of the parameters specifying the model shape can be estimated via the mean-square deviation of experimental and simulated scattering images. Such a quantitative comparison requires FDTD calculations to accurately include the material properties and knowledge of the detector response as a function of intensity, which is in general nonlinear and may be described by a power behaviour (in our case, the exponent is close to 1/3). The example in Fig. 4 results in a near-parabolic evolution of the deviation as a function of radius, from which the parameter uncertainty (that is, the standard deviation of a parameter in a non-linear fit, see ref 40) σr=7  nm can be estimated. This calculation has been performed after optimization of the truncation, hence the radius slightly differs (≈5 nm) from the one given in Fig. 2b, where the latter reflects the best MSFT estimate. We note that the reduced radius has only minor effect on the particle volume because of the specific definition of the radius as that of a circumscribed sphere. The R-factor in Fig. 4e was calculated via R=∫∫|IexpIcalc|dqxdqy/∫∫Iexpdqxdqy, where Iexp and Icalc are the experimentally observed and FDTD-calculated intensities in the scattering images, respectively.

via The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering : Nature Communications : Nature Publishing Group.


About Timothytrespas

I am a victim of human experimentation MK-ultra mind control Morgellons nanotechnology syndrome & remote neural connectivity. I am an artist, inventor, musician, thinker, lover, human being who cares for all humanity & all life. I believe people should endeavor to live in peaceful cooperation rather than brutal waring survival of the most brutal. We live in a forced false-paradigm and I desire to wake people up from the 'trance hypnotic mind control programming' to the 'TRUTH of light and love'! Blessing and peace. Justice to all who suffer under tyranny. Compassion for all beings. May GOD have mercy on us all.
This entry was posted in metals and the human body, nanotechnology meta materials quantum effects light electromagnetics genetics and you information to understand technology changing life as we knew it- forever!, random views, Required SCIENCE PHYSICS MATH and TECHNOLOGY behind the design function operation and understanding of psychotronics energy based weapons nanotechnology tracking genetic manipulation biophotonics mind and tagged , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

13 Responses to The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering : Nature Communications : Nature Publishing Group





  2. Tomo crnjac says:

    I swear on my kids I didn’t write that Hayley Patricia Brown comment like it was not my story once again I swear on my kids just to get that straight and that’s me done with this website because it’s fucken so stupid ok I am out of here,


  3. Tony popovic says:

    Anytime cowards putting Hayley & Tomo through hell for no reason and his way to smart to just get fully fully fucked over for what they wanted very street wise and a good judge of character,


  4. this soundalike very my work and my life but at there’d of the day I think this work that I am doing is very bad towards another human being like I no as a stupid worker who took part in harming others and my own family in the process and little kids which I had no remorse for so what lays beyond the days to come in my life as I am the main person that took part I really hope it’s nothing bad cause I am so over this taking place and I hope my life can go on and there is no pain and suffering from my side of life i took part in destroying someone’s life and I would call it attempt murder I Hayley Patricia brown have taken the life of another person who is a good bloke all for money I did it and I shouldn’t of took part in this kind of employment and my mother Leanne brown digs wholes for grave sites and makes sure there in tact for funnels what a lie I have lived but one person I am afraid of is god the creator if all human being and my ugly head and messed up body and the inner me feels like so evil that time will tell fuck I wishi never got involved I live a daily lie fingers crossed I don’t have to answer my wrong doings to no one in the courts cause I am section 89 under the death sentence my soul will be taken away from God and please forgive me for hurting innocent partners and family’s and I am a scab for taking and not paying so at the end of the day I am the con cause I Hayley P Brown am a dirty hurter who sucks cock swallows cum just to prove my love for the victim and I loved that part about my job cause I am a slut and a whore and very ugly put it this way I had to get Botox on my lips when really I need a new soul or someone to
    Pick on that’s easily mislead and easily provoked cause I don’t think I can stop doing my job I also admit I am a deceiving little dirty slut and I am worried about my life cause I have hidden under the dooner for so many years and shed so many tears and felt a lot of feari think I have did my job on my self better then the meant to be victim help me help me I am FUCKEN lost I live some where near the beach cause I can see water and a slut drowning her sorrows in old fashion ways like a little slut ok I got to go now I think someone is after me cause I can here my cat getting chopped up by jack hope and his gay boyfriend cause those two are fully sick and love eating cats oh my little poor moo moo and Sarah well I did choose to play and harm others but only did it cause I was told to but I still feel bad like shits gonna go very wrong for me in time and my honest mummy and daddy who have missed me for so many years anyways I hate my ugly self cause I though I was a model from Bombay but real am one beaten up slut who loves to suck my victims cocks and swallow there cum cause that’s the only time I get to eat
    I got to go now my mother is calling me and has grounded me to sit on a computer for months and months to get shit done and I always be tend to have fun fuck I am a nerd so sorry to the victim we do not forget we do not forgive and I do suck dick regards FAILY PATRICIA BROWN ALDO KNOWN AS S CLOWN 🙂 !!!!!!!


    • Jessica stort says:

      Tomo crnjac. Nice story. Keep blaming others you piece of shit women basher.


      • Tony popovic says:

        This write up is fucked up and leave Tomo crnjac name out of this blog because he did nothing wrong to you besides tried his best to help you Hayley brown and took you into his life and family home which was very nice of him and shit hit th fan all the time no sleep using drugs everyday he loved you even while you were getting paid to harm him and decive him and mislead him what a joke of human rights,

        His been locked up on a few occasions because of you and he never even had a criminal record until you came into his life and you had it easy Hayley,

        Have you heard of karma young lady well I hope you got paid enough to carry on with acts that occurred,

        So who were you working for? because they left you for dead and made you carry on with these criminal acts on Tomo. Crnjac and his family,

        As far as I am concerned she should be imprisoned and her boss who ordered all this to take place because it has back fired on use and like I said karma is a bitch,

        All of these computer right ups and to fuck with his head is nothing besides a waste of time and a joke because look at all of the work and time that’s been spent on a inocent nice guy which is a crime but it got him a lot wiser funny to say,

        Also blame your boss and the rest of the crew because they didn’t give a fuck about you Hayley they left you for dead and the wrong doings that took place you should buy a gun and shoot the bastards straight in between the eyes or take them to court and be awarded compensation and have bastards like your boss prosicuted,

        One thing Tomo does not give up and never will until justice is served either legally or unlegally his had his life wasted for 6 years now his kids are to scared of this whole situation and there only minors and your boss should go see Tomo and tell him straight out to his face but no his got no balls because he would get pumped by either me or Tomo,

        Tomo is a way better bloke then people realise he always gets by no matter what and is very kind at times and he is pissed off with all of these actions that he has had to live with and he is very unsociable now his mental health has hit the roof and on top of things gets threatened by Hayley and cops all for doing his best to servive day by day,

        Hayley Tomo would of done anything for you and his had a hard life for quite some time now also the same goes for you and what was the result for all of this taking place yes two people getting hurt and fucked on and that’s Tomo & Hayley,

        Hayley you should look after yourself a lot more in life because it’s a jungle out there and for Tomo just keep on going mate you will get far in life with a good heart and soul like you have which couldn’t be taken a way from him in full,

        Tomo go hard son and keep them at bay because they got nothing from you just a big confusion and headache and hopefully a conviction on these crimes that were carried out on him I can see justice will take place very soon,

        Well I guess time will tell which it always does one way or another he did really well going through what he did and he got it straight on the money he was right what cowards to do this to him and Hayley shouldn’t of got involved in this harm Tomo bullshit,

        Ok good luck to anyone who can break him because your gonna have a headache and possibly much more his ready to rock n roll any time he (tort) use really well to fuck off,

        Result for this taking place over 6 years is a lot of headaches and shaky people who can’t handle the truth taking part in this criminal activities on Tomo’s life,

        Regards Tony Popovic


      • Tony popovic says:

        Tomo crnjac do you no him i hope not or he might flog you be real careful around that bloke or his computers and life just letting you no ✌🏿


        • Jamie Jamie says:

          What load of bullshit honestly use can’t even speak the truth use are dirty lying scum bags with no pride and evil use should be in joal or a mental facility one of the two
          Use have a lot of power having the government behind use but picking on inoccent people is wrong and unlawful how do use sleep at night
          Anyways I hope use go down the people responsible for all if this or who took part in this crap because it’s not normal also young lady Hayley P Brown why don’t you tell us who’s employed you to do these crimes to the victim?


      • Tomo Crnjac says:

        Keep blaming others like who?
        Being drugged up tortured and abused set up on my end.
        I had no criminal record until she walked into my home and life and come and say it to my face that I am a women basher,
        Like she says it was her job to harm me so I was never in the right state of mind,
        Anyways come and say it to my face what you have to say it’s not like you have been through what we have been through.
        Sad story which no one helped us or me I wrote 15 letters to the prime ministers asking for help and no reply fuck this government there crooks legally allowed to harm it’s own citizens and play mind games now what a joke,
        I have did nothing besides tried to help the help and is that wrong to do well I don’t think so and look at the extreme measures they go to so they can fuck with my head write ups like this wow how normal are these freaks.
        They will keep going until the day I die which I have no date for my death and I don’t care and I am offering them to kill me come on or keep killing me slowly which is not write world wide but in Australia it’s meant to be a good country and these actions taken out on its own people is a joke and like I said come to my face and say it don’t hide behind a computer I live in Raby NSW,
        Miss S-tort

        Regards Tomo


      • Jessica tort you can go fuck yourself and talk shit on this word press site that is meant to gee me up well it’s perthatic and stupid and I at least made it through a 100 to 1 long odds of my head getting fucked over for what reason that’s right no one can give me one I am a very smart man that smiles and tries his best in life and then I get abused through these fucked up site give up its a joke.
        This Australian government put two people through hell if you wanna call it that fucken idiots
        I started playing with you cunts years back because use are fucked at doing what use no shit about and my mouth can talk we all no that but not what use wanna here and use never will hear it out of my mouth gofuck yourselfs I am a decent man.
        Use destroyed my family you dogs but time will fix that up dick heads I got papers that use will never get and I will starve if I have to and my poor kids getting abused mentally through this process is wrong there only minors I wouldn’t wish it on no ones kids and it’s fucked my father hood up with them
        I have been jailed for bullshit I never had a criminal record until I got drugged up and abused mentally if you wanna call it that
        I am gonna do what I do best and prove to myself that I can do it to start a business off and only 25% tax I will pay and the rest will be cash in the kitty meow fucken stupid cunts and I always was good at what ever I did you no Tony we go way back but you got to no when to pull the plug and give no pleasure to you dogs playing games with people’s life’s
        And I get called women basher lol how sad this case is and was and at least I can stand my ground
        Now to the police I would like to thank carmen she was the best lady to tell me what she did and for lomal I hope you can juggle money on top of your head slut I got it right when I met you at T2 I couldn’t of said it better slut lol
        For the police find better things to do then fuck around with me
        For that cunt at the Croatian club that approached me years back I will smash your head in if I ever see you around mother fucker piece of shit
        Also this is the last use will hear from me on this site and I am sending my regards to carmen you were alright and for those two dogs in QLD you were spot on lol
        Now I am going to live my life and listen to nwa its back on u tube mobile lol any sore heads around still lol
        Jessica TORT your the piece of shit scum that’s all I got to say and if you want to do something about it come I live in Raby Lockheed street 126 in the back granny flat with yellow walls lol and sort me out not with your mouth unfortunately and bring who ever you want because your got mud on your face you dirty piece of shit dragging my name on these stupid web sites slut
        I did very good to have witnessed what use are capable of harming me and the time will come in your life where god will judge every one of use trust me that’s life and playing games with humans of good nature is even worse to sin against
        I have been around the world and never have I seen this sort of behaviour and misconduct from another human in the whole world and fuck use all who have a problem with me
        I can’t believe I am even writing this blog about use fucking me over and hey where is the Gold lol fuck it let it sit where it is lol it’s never going to be given away
        Now use fucked Hayley’s life up using her you fucken dogs couldn’t use keep following me around the country no more lol smokey and drive lol and use never scared me once possibly Hayley use scared the poor lady
        But times have come to an end between me and the law see I like outlaws because there not in between there what they are and see use think use are normal and bad at the same time see that’s fucked up in the head use are just puppets doing dirty work for the government
        Carmen I no who you are and I have a gift for you one gold bullion only one and no trespassing no more your welcome to pick it up just come to Raby it’s ready for you and then you can go parade it to your bosses but don’t give it to them to keep it might be a rebate of finances getting back from this half decade wrong doings to me that have costed lol millions
        I as one bloke have never laughed like I use to over these stupid events and bizarre episodes that took place
        The biggest question is why was I laughing so much that what use will never no lol
        Now fuck off and give your selfs a pat on the back of what of a fuck up use have caused
        God bless the good people out there in life use will get far because the good is the good
        💸🥉💁👁⛸🌍🤓👨🏿‍💻😤✌🏿🖕🏿💋💋💋🗣🗣🗣🗣👮‍♀️👼💇🏼‍♂️🎓👑🐷🐷🐷🍀🌎❄️🎫🎟🎬🏎🚁🚁🚦🗽🗽🗽🗽🗽🗽🗽🗽🗽🗽🗽🗽🗽🏪🏪🏪📲📡⏳💰⚖️💳💊🛎🛏🛏🛏🛏✝️🆎🆎🆎🆎🆎🔤🔤🆓🆓🆓2️⃣5️⃣6️⃣6️⃣®💲💭💭💭💭🇦🇺🇭🇷🇭🇷🇭🇷 just a few pictures I made up for use now I hope use truly fuck off and it’s over because I have a life to start living and miss Jessica TORT the offer is on the table for you I don’t need to hide wait someone is at my door hello hello who is it oh it’s Gunther quick shut the door bo bo we do not forgive and we do not forget that’s a bet




        • Robert guard King Kong says:

          Hi I think this is all fucked up and it’s all not possible to have taken place from the Australian government alone.
          Why did you choose to live the way your saying you did Tomo?
          I think 123 is a joker who hides behind closed doors as I have read here on these crazy blogs but time will tell.
          Now Jessica tort you posted your comment on the 6th of may 2016 the same day and date when Tomos address was posted on google the 6th of may 2016 now how bizarre the same date very silly.
          To much time on your hands hey and how do you no Tomo or Hayley very strange hey or this is the work of ……………..
          I think 123 should go jump of the Sydney harbour bridge and drown its sorrows for being a fucken idiot because it’s wrong that this many years have been wasted on two life’s of brain washing of innocent people.
          Hayley you should be asking more questions then that what you wrote that you were employed to take these actions on the victim Tomo.
          You down graded yourself with the comments you wrote about yourself also who employed you like you say and how much money did you get to take out these actions on your so called victim Tomo was it worth it?
          I no that this blog is all bullshit and dispiteful and envy against Tomo the victim who sounds like his very disturbed from the last half decade but hold in there mate you will be just fine and things will go your way just change the people you hang around and stay positive in life.
          I am gonna do something about these aligations Tomo I no where to start and just be patient mate it’s going to be a bit of a process and time consuming but you will notice what I am going to do mate for you stay strong mate.
          Now the games on but with me which good luck to anyone that knows me so I have a head start and I will keep use updated on this blog site because I am gonna start releasing addresses of idiots that took part and names just in time nice and slow so they can also be shamed on google and let the people no who they are.

          King Kong Robert Gaurd


    • The real Hayley Patricia Brown says:

      We all I know I did not write this non sense bullshit on this website, that is the work and spelling of tomo Crnjac who has it in for me for no good reason other than his own bullshit lies and story telling. Please remove this post if possible. Kind regards Hayley


I would love to hear your thoughts and opinion in these issues. Please Leave a Reply:

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s