Disruptive EPIC sensor with multiple proven applications in high sensitivity electric potential sensor that can be used in either contact or non-contact mode.
- Contact mode: measures bio-electric signals like ECG, EMG, EOG and EEG.
- Non-contact mode: measures disruption in the electric field caused by human body movement enabling. Also Proximity sensing, Movement Sensing, and Gesture recognition.
Source: EPIC Sensor – Plessey Semiconductors
The human body, because it acts as a large container of conducting/polarizable material, causes a large perturbation in the electric field and so presents an easily detectable target for the sensor.
The ability of EPIC to resolve signals unique to various muscles or groups of muscles presents opportunities for improved man-machine interaction
Strong demand for products with major applications
- Communications – smart-phones and tablets for ECG and proximity sensing
- Consumer – remote sensing controllers for video games consoles
- Automotive – alertness, occupancy and slow speed collision avoidance
- Medical – ECG, tomography and “smart bed” applications
EPIC PCB hybrids and chips for all electric potential sensing applications
- The integrated circuit provides a unique high impedance amplifier design
- The PCB hybrid solution includes EPIC chip, tuning circuit and the sensor electrode
-
Other Applications
Security
Because of EPIC’s mode of operation, it can be used to detect any disturbance in the local electric field at distances of up to several tens of meters. The human body, because it acts as a large container of conducting/polarizable material, causes a large perturbation in the electric field and so presents an easily detectable target for the sensor.
Sitting a few meters away from the sensor, one has only to raise the sole of one’s foot to create a strong signal.
Arrays of sensors can be used to provide spatial resolution and therefore the location of a target.
Such arrays can also distinguish between humans and quadrupeds because the time signature of the response is a direct function of cadence.
Such a system of sensors could perhaps be used for border security in remote areas.
Man-machine interface
The ability of EPIC to resolve signals unique to various muscles or groups of muscles presents opportunities for improved man-machine interaction.
For example, a quadriplegic who currently depends on either a unicorn stick or a suck/blow tube to issue commands to equipment within his or her local environment could achieve a faster and more efficient interaction using EPIC for eye tracking and detection of activity in any muscle groups still under voluntary control.
Alternatively, because EPIC can assign a unique signature to the use of certain muscle groups, it opens up many possibilities for interfacing with and controlling prosthetic limbs.
Microscopy
EPIC is also a useful tool in the microscopic domain. Small sensors scanning a microchip, for example, can show areas of high or low potential, allowing the user to map the current distribution within metal tracks and other circuit elements. Faults in dielectric materials can also be detected either by passive means (by detecting piezoelectric effects) or by identifying leakage paths in an active circuit.
Recently a ≈6 µm sensor has been used to reveal a human fingerprint left on an insulating PTFE material (Figure 6) and to characterize its decay over time [3]. The advantage to the forensic scientist of being able to date a fingerprint is obvious. The technique is nondestructive and leaves no chemical residue, which means that DNA samples can be taken at a later date.
Figure 6
What Is EPIC?
EPIC is an acronym for “Electric Potential Integrated Circuit” but the term has become synonymous with the integrated circuit technology, the sensor itself, and, in a wider context, the physical principles of operation of the device within a system.
EPIC is a noncontact electrometer, meaning that there is no direct DC path from the outside world to the sensor input, a condition that is somewhat analogous to the gate electrode of an MOS transistor. The electrode is protected by a capping layer of dielectric material to ensure that the electrode is isolated from the body being measured. The device is AC coupled with a lower corner frequency (-3dB) of a few tens of MHz and an upper corner frequency above 200 MHz. This response is adjustable and can be tailored to suit a particular application. Such an electrometer cannot be DC coupled because the Earth’s electric field close to the surface is ≈100-150 V/m.
In single-ended mode the device can be used to read electric potential; used in differential mode it can measure the local electric field; or it can be deployed in arrays to provide spatial potential mapping (locating a conducting or dielectric material placed within free space).
Figure 1 shows a basic block diagram of the EPIC sensor [1]. The size of the electrode is somewhat arbitrary and depends on the input capacitance required for a particular application. For bodies placed close to the electrode, the electrode’s size is important and the device operation can be understood in terms of capacitive coupling. For devices that are several meters away, the coupling capacitance is defined only by the self-capacitance of the electrode and the device’s response is largely a function of the input impedance as it interacts with the field. This is rather counterintuitive but is a function of the very small amount of energy that EPIC takes from the field in active mode.
Figure 1
The input resistance to the device can be boosted by using bootstrapping techniques while the input capacitance can be reduced using guarding techniques. The input capacitance can be driven as low as 10-17F with the input resistance being boosted to values up to around 1015Ω, thus keeping the interaction with the target field to an absolute minimum and ensuring that all currents are small displacement currents only.
A better understanding of the feedback mechanisms can be obtained by considering the input buffer of the amplifier and its associated impedances as shown in Figure 2. The resistors RG1 and RG2 are used to set the gain of the first stage, which is nominally unity. Cin and Rin represent the input capacitance and resistance native to the amplifier, respectively, and include any parasitic components due to layout or substrate issues. The capacitor Cext models the capacitive coupling to the measurement target.
Figure 2
For close coupling (Cext >> Cin) this is usually defined as
where:
a = the equivalent shared electrode/target area
d = the distance between target and sensor
ε0 = the permittivity of free space
εr = the relative permittivity of the dielectric in which the sensor is operatingFor loose coupling (Cext << Cin) we have the limiting case (self-capacitance) shown as
Where r is the diameter of the sensor plate.
Analysis of the circuit shows us that we have a classic single-pole transfer function shown as
The Bode plot for this is shown in Figure 3.
Figure 3. Bode plot for the transfer function of Equation 3
The corner frequency (Fc1) can be expressed as
By applying the bootstrapping techniques mentioned earlier, we can control the values for Cin and Rin to give effective values, allowing us to control both the gain plateau and the corner frequency (Fc1 moves to Fc2). The response of the sensor can be further controlled by the design of subsequent stages and positive feedback loops. Thus we have a sensor that can be tailored to suit the particular application at hand.
Figure 4 shows a pair of Plessey EPIC sensors and the associated control box. The control box is an amplifier/filter combination and is used for demonstration purposes only. The electrodes shown here have been tailored for contact ECG measurement but can also be used for remote sensing and other applications.
Figure 4
Medical Applications
A great amount of interest has been generated within the medical community where the primary focus is on using EPIC for surface body electrode physiology applications such as electrocardiograph (ECG), electromyograph (EMG), electroencephalograph (EEG), and electrooculargraph (EOG).
The EPIC sensor can be used, for example, as a replacement technology for traditional wet-electrode ECG pads, because it requires neither gels nor other contact-enhancing substances. When the EPIC sensor is placed on (or in close proximity to) the patient, an ECG signal can be recovered. The sensor is capable of both simple ‘monitoring’ ECG as well as making more exacting clinical diagnostic measurements. In the latter application it can be used as a replacement for the traditional twelve-lead ECG, in which electrodes are placed on the limbs and torso (each pair of electrodes is called a lead and each lead measures the electrical activity of the heart from a slightly different perspective) to achieve a clearer picture of how the patient’s heart is working. An array of EPIC sensors placed on the chest can be used to recreate the lead required with resolution as good as or better than that achieved using traditional systems. Figure 5 shows a comparison between the results using EPIC and using traditional wet electrodes for leads II and aVL [2]. These two leads are important in the diagnosis of conditions such as coronary artery occlusion.
Figure 5. ECG readouts showing the results using EPIC (top) vs. traditional wet electrode ECG (bottom)
The sensor can also be used for recovering other physiological signals such as those caused by the electrical activity of the eye muscles as one looks left, right, up, or down. These signals have unique signatures; an EOG can be used to track the position of the eyes and therefore produce targeting information for military and gaming applications, for example. Perhaps the most exciting application in the medical field is that of electroencephalography (EEG) where the electrical activity of the brain is recorded. Application of the EPIC sensor to this field is still in its infancy but the potential ability to record identifiable signals against known thought patterns opens up possibilities that currently only exist in science fiction.
What is the gain of the EPIC sensor?
Currently the sensor is available with mid-range (flat-band) voltage gains of x10 or x50. This corresponds to around 20dB and 34dB.
What supply voltage do I need?
The PS252xx and PS254xx family (square compact) require a bipolar supply of between ±2.5V and ±4.5V.
The PS25012x family of application boards generate the bipolar supply from a single supply, and so require only a unipolar supply of between +4 and +8V.
The PS251xx family of sensors require only a unipolar supply between +4.75 to +8.0V.PLESSEY SEMICONDUCTORS | TAMERTON ROAD | ROBOROUGH | PLYMOUTH | DEVON | UK | PL6 7BQ© Pl
PLESSEY SEMICONDUCTORS | TAMERTON ROAD | ROBOROUGH | PLYMOUTH | DEVON | UK | PL6 7BQ© Pl
PLESSEY SEMICONDUCTORS | TAMERTON ROAD | ROBOROUGH | PLYMOUTH | DEVON | UK | PL6 7BQ© Pl
Apple iPhones have been doing some of these things interacting with the human body without their wristband thing. I was amazed a year ago when I stumbled across that part of the phone. It had a history of how much I walked, my heart beat, and when I walked up and down stairs. Who knows what else it was recording. Without the wrist band thing.
LikeLike